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Abstract: In this study, existences of k-upper outliers is investigated in distribution samples of gamma, 

Normal and exponential by carrying out simulation of ten thousand  at different values of n  using algorithm 

introduced by Tietjen-Moore, test statistics and critical values were equally estimated from the algorithm. A 

Normal Q-Q plot was made which aims at distinguishing a data set that follows a normal distribution and 

one that deviates from normality. The algorithm was applied to Nigeria-US dollars foreign exchange rate, 

both on raw and logarithmic transformed data. The simulation study reveals the existence upper outliers 

more in Gamma and exponential sample than the Normal sample. Empirical analysis shows that there are 

upper outliers in the raw data set but no upper outliers are found in the transformed data. The result in this 

paper would help researcher in business and economics to take time to explore data before use and properly 

transform accordingly to avoid error in estimation.   
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1. INTRODUCTION 

The application of Normal, Exponential and Gamma distribution cut across disciplines, the detection study 

of outlier on the sample of the distribution of utmost importance. Often, some observations from a set of data 

might appear to be inconsistence with the rest of the observations as a result of outlier Lalitha. S & kurmar. 

N (2012). Inclusion of the outliers may lead to model misspecification, biased parameter estimation and 

incorrect results. It is therefore important to identify outliers prior to modeling and analysis Liu et al (2004). 

Barnett and Lewis (1994) emphasized that in other to identify these outliers discordancy test needs to be 

performed.  

 

Ben-Gal et al (2005), Outlier detection methods have been suggested for numerous applications, such as 

credit card fraud detection, clinical trials, voting irregularity analysis, data cleansing, network intrusion, 

severe weather prediction, geographic information systems, athlete performance analysis, and other data-

mining tasks (Hawkins, 1980; Barnett and Lewis, 1994; Ruts and Rousseeuw, 1996; Fawcett and Provost, 

1997; Johnson et al., 1998; Penny and Jolliffe, 2001; Acuna and Rodriguez, 2004; Lu et al., 2003). 
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Ben-Gal et al (2005), also stated that most of the earliest univariate methods for outlier detection rely on the 

assumption of knowingthe underlying distribution of the data. Moreover, many discordance tests for 

detecting univariate outliers further assume that the distribution parameters and the type of expected outliers 

are also known (Barnett and Lewis, 1994). 

 

Certain figuresthat are considered as outliers sometimes represent actual values in a given sample, and 

maybe sending a warning signal to the user of such data. In the study byAdeleke et al (2015) where daily 

foreign exchange risk of Nigeria naira against nine other foreign currencies were forecasted using ‘extreme 

value theory’ where tail area of the distribution was modeled and risk measured accordingly. 

 

In this study, we seek to identify the presence of k-upper outliers in exponential, Gamma and Normal 

samplesusing Tietjen-Moore test-statistics, also apply the same technique to foreign exchange data 

andexamine the difference between test statistics for samples that are approximately normally and the one 

that are not approximately normally distributed.   

 

The underlying distributions are discussed as follows: 

 

1.1 Discordancy Test in Normal distribution 

The random variable x  is said to have a Normal distribution (Gaussian) if its density function is  

 
2

2

2

1 ( )
( , , ) exp

22

x
f x


 

 

 
  

 

, 0  ,       (1) 

The normal distribution is an extremely important in many fields; it is applicable in physiological 

measurements of biological specimens, financial variables like exchange rates, counting problems that 

follow Binomial or Poisson random variables, light and thermal intensity and many more. It has relationship 

with distributions like Raleigh, Cauchy and lognormal distributions, Ugwuowo (2009).  

 

According to Ben-Gal et al (2005), A central assumption in statistical-based methods for outlier detection, is 

a generating model that allows a small number of observations to be randomly sampled from distributions 

1,........, kG G , differing from the target distribution F , which is often taken to be a normal distribution 
2( , )N   . The outlier identification problem is then translated to the problem of identifying those 

observations that lie in a so-called outlier region. This leads to the following definition (Davies and Gather, 

1993): For any confidence coefficient ,0 1   , the α-outlier region of the 2( , )N   distribution is 

defined by 

 2 1( , , ) :| |
2

Z
out x x 

              (2) 

where qZ  is the q  quintile of the (0,1)N . A number x  is an α-outlier with respect to F if 2( , , )x out    . 

Although, traditionally the normal distribution has been used as the target distribution, this definition can be 

easily extended to any unimodal symmetric distribution with positive density function, including the 

multivariate case Ben-Gal et al (2005). 

 

To carry out discordancy test in Normal sample, we assume a univariate data set of n observations 

represented by 1 2 2 1, ,................. ,n nx x x x   order statistics where (1)x
 
is the lowest observation and ( )nx the 
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highest observation. Surrendra et al (2006) while considering six Dixon type 7N and 9 13N N , identifies 

that Tests 7, 9N N , and 13N  are discordance tests for an extreme outlier ( ( )nx  or (1)x ) in a normal sample 

with population variance 2( )  unknown, whereas tests 11 13N N  are for two extreme observations (either 

the upper-pair ( )nx , ( 1)nx   or the lower-pair (1)x , (2)x ) in a similar normal sample. The corresponding test 

statistics for example, the test statistic for test 9N  is 

 

(2) (1)

( ) (2)

( )
9

( )u
n

x x
TN

x x





       (3) 

To perform the discordancy test k  upper outliers, we compute 9uTN  in equation (3). It is said that the value  

( )nx is under evaluation, i.e., tested to see if it was drawn from the same normal population as the rest of the 

sample (null hypothesis 0H ), or it came from a different normal sample (with a different mean or a different 

variance or both), i.e., if it happens to be a discordant outlier (alternate hypothesis 1H ). The computed value 

of test statistic 9uTN  is then compared with the critical value (percentage point) for a given number of 

observations n and at a given significance level (SL), in this study used SL of 5%  and 1%  was used. 

 

If computed 9uTN  is less than the critical value at a given confidence level, 0H  is said to be true at that 

particular confidence level, i.e., there is no outlier at the chosen confidence level. But if computed 9uTN  is 

greater than the respective critical value at a given confidence level, 0H  is said to be false and, consequently, 

1H  is said to be true at that particular confidence level, i.e., the observation tested ( )nx  ) by 9uTN  is detected 

as a discordant outlier which can then be discarded, and the test applied consecutively for other extreme 

values until 0H  is true. 

 

1.2 Discordancy Test in Exponential Distribution 

The exponential distribution with scale parameter,  , is the distribution with probability density 

Function 

1
( | )

x

f x e 




 0, 0x          (4) 

The exponential distribution has many applications in queuing theory life-testing experiment and reliability 

engineering, other areas of applications of the exponential distribution are stated in Ugwuowo (2009) 

 

According to Lalitha. S &kumar . N (2012), let 1,............ nX X be a random sample from an exponential 

distribution ( | )f x  and its corresponding order statistics be (1) ( )............ nX X  . To perform the 

discordancy test for k upper outliers, we set up a null hypothesis 0H  that all the observations are coming 

from an exponential distribution ( | )f x  against the slippage alternative, kH , that (n − k) observations are 

from this population but kvalues are from a ( | )f x b , (b >1) population. In fact, the choice of k in multiple 

outlier problems is crucial. They emphasized that improper choice of k may give misleading results and the 

problem of deciding on the number of outliers in a sample has been considered by various authors such as 

Jain and Pingel(1981), Kale (1976), Rosner (1975) and Tietjen and Moore (1972). 
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According to Barnett and Lewis (1994), various discordancy tests for single and multiple outliers have been 

proposed for exponential samples. Likes (1966) proposed a Dixon-type statistic  
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A large value of the test statistic 
kD signifies the presence of k-upper outliers in the sample. 

Zerbet and Nikulin (2003) also proposed test statistic for identifying outliers as follows: 
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A smaller value of kT  indicates the presence of outlier in the sample. 

A popular test statistic which is also used for testing upper outliers is the maximum likelihood ratio test 

given by 
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If kL  is greater than specified value, the test indicates the presence of outliers. 

Lalitha. S &Kumar . N (2012), used the test statistics proposed by gap-family to test for multiple outlier in 

exponential sample 

The test statistic for k-upper outliers may be defined as: 

( ) ( )n n k

k

n

X X
Z

S


         (8) 

A larger value of kZ  will indicate the presence of k upper outlier in the sample. Therefore, the null 

hypothesis is rejected when ( )k kZ z  , where ( )kz   is the critical value at  level of significance. The 

exact null distribution kZ  for 2k  is rather complex. However, the critical value ( )kz   of test for 1k  are 

found to be very close to: 
1
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1.3 Discordancy Test in Gamma Distribution 

Gamma distribution is also an important distribution, one of its application which is modelling waiting times 

between Poisson distributed events.  

 

JabbariNooghabi et al. (2010) and Kumar and Lalhita (2012), shows that If F  is a Gamma distribution then 

0H : 1,............ nX X are n  independent random variables, each following a Gamma distribution with shape 

parameter 0m   and scale parameter 0  , denoted by ( , )m  , 

whose probability density function (pdf) is given by 

11
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Assumption University-eJournal of Interdisciplinary Research  (AU-eJIR) Vol. 1, Issue 2, 2016 

 

IISN: 2408-1906 Page 84 
 

 

However, Lucini, M.M and Frery A. C (2015) identifies that results presented by JabbariNooghabi et al. 

(2010) do not hold in all expected cases. With this, the technique proposed by Kumar and Lalhita (2012) for 

detecting upper outliers in Gamma samples is also not valid. Specifically, the note shows that the probability 

density functions (pdf) under the null hypothesis of the test statistics therein proposed are not always valid. 

Both authors proposed tests statistics to detect outliers in Gamma samples using a test of discordancy for 

outliers framework as defined by Barnnett and Lewis (1994). Lucini, M.M and Frery A. C (2015)pointed out 

that equation (10) will be assumed that these random variables are distributed according to a ( ,1)m  law, 

that is, with pdf given by 

11
( ; ) exp( ), 0

( )

mf x m x x x
m
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

       (11) 

 

The alternative hypothesis used in JabbariNooghabi et al. (2010) and Kumar and Lalhita (2012) is the 

slippage alternative. We are interested in detecting 1 k n  upper outliers using kZ , the statistic proposed 

by Kumar and Lalhita (2012). This statistic, after some computations, can be written as 
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Where  

( ) ( 1)j j jY X X    

            (13) 

( )jX denotes the j-th order statistics of the ordered sample from (1 )( )i i nX    in non-decreas 

ing order, that is, (1) (2) ( )....... nX X X  , and k  is the number of observations suspected 

to be upper outliers. 

 

A strong assumption made in both works is that, under the null hypothesis, each jY  follows a 

1( , ( 1)m n j     distribution. This is not true when 1m  .See work done by Lucini, M.M and Frery A. C 

(2015) for detailedcomments on “Detecting Outliers in Gamma Distribution" by M. JabbariNooghabi et al. 

(2010).  

 

1.4 Tietjen-Moore Test Statistics 

Tietjen-Moore test-statistics reduces to Grubb’s test if k=1, Grubbs' test (Grubbs 1969and  Beck 1972), is 

used to detect a single outlier in a univariate data set that follows an approximately normal distribution. 

Grubbs' test is also known as the maximum normed residual test. 

 

The Grubbs' test statistic is defined as: 

| |tY Y
G

s


  

with Y and s denoting the sample mean and standard deviation, respectively. The Grubbs' test statistic is the 

largest absolute deviation from the sample mean in units of the sample standard deviation. 

This is the two-sided version of the test. The Grubbs' test can also be defined as one of the following one-

sided tests: 

i. test whether the minimum value is an outlier 

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h.htm#Normality
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minY Y
G

s


  

with Ymin denoting the minimum value. 

ii. test whether the maximum value is an outlier 

maxY Y
G

s


  

with Ymax denoting the maximum value. 

For the two-sided test, the hypothesis of no outliers is rejected if 
2

2
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with tα/(2N),N−2 denoting the critical value of the t distribution with (N-2) degrees of freedom and a 

significance level of α/(2N).For one-sided tests, we use a significance level of level of α/N. 

Grubbs' test is defined for the hypothesis:H0:There are no outliers in the data set and Ha:There is exactly one 

outlier in the data set.  

 

Tietjen-Moore is a general Grubb’s test when more than one upper outlier is suspected in a given data set. 

Steps in computing Tietjen-Moore test statistics are considered as follows: 

 

Sort the n data points from smallest to the largest so that iy  denotes the ith  largest data value. The test 

statistic for the k  largest points is 
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with y   denoting the sample mean for the full sample and ky   denoting the sample mean with the largest k  

points removed. The test statistic for the k  smallest points is 
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with y  denoting the sample mean for the full sample and ky   denoting the sample mean with the smallest k  

points removed. 

To test for outliers in both tails, compute the absolute residuals 

| |i ir y y          (16) 

 

and then let iz   denote the  iy values sorted by their absolute residuals in ascending order. 

The test statistics for the case is: 
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http://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda3664.htm
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with iz  denoting the sample mean for the full data set and kz  denoting the sample mean with the largest k  

points removed. We reject 0H  if kE < criticalE
 

 

2. METHODOLOGY 

Tietjen-Moore test statistics is used for the sample of the three underlying distributions to get the test 

statistics and the critical value for 10, 000 simulations, k-upper outliers were also examined using Nigeria 

foreign exchange rate against the US dollars following the same algorithm. The simulation and empirical 

study was carried out using R 3.2.5 the test statistics and critical value were computed for each value of n

.The null hypothesis 
0H for Tietjen-Moore test is defined as there are no outliers in the data set, while the 

alternative hypothesis aH  , there are exactly k outliers in the data set.  

 

Algorithm for Tietjen-Moore is as follows: 

(i) Create a function to compute statistic to (ii) Compute the absolute residuals (iii) Sort data according to 

size of residual (iv) Create a subset of the data without the largest k values (v) Compute the sums of squares 

(vi) Compute the test statistic (vii) Call the function and compute value of test statistic for data (viii) 

Compute critical value based on simulation. 

 

The Tietjen-Moore test is a lower, one-tailed test, so we reject the null hypothesis that there are no outliers 

when the value of the test statistic is less than the critical value.  

 

3. SIMULATION STUDY 

The critical region for the Tietjen-Moore test is determined by simulation. The simulation is performed by 

generating a standard normal random sample of size n and computing the Tietjen-Moore test statistic. 

Typically, 10,000 random samples are used. The value of the Tietjen-Moore statistic obtained from the data 

is compared to this reference distribution. The value of the test statistic is between zero and one. If there are 

no outliers in the data, the test statistic is close to 1. If there are outliers in the data, the test statistic will be 

closer to zero. Thus, the test is always a lower, one-tailed test regardless of which test statistics is used, kL or 

kE . 

 

 
Fig 1: Q-Q fo Normal Sample 

 

 
Fig 2: Q-Q for Exponential Sample 

 

 
Fig 3: Q-Q for Gamma S Sample 
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Table 1: Simulated and approximated test statistics when 2,3,4k  for Exponential, Gamma and Normal 

sample using kE as test statistics. 

 
n  

2xpEE  
2GamE  

2NormE  
3xpEE  3GamE  3NormE  

4xpEE  
4GamE  

4NormE  

10 0.2114 0.1913 0.2177 0.2709 0.1861 0.3485 0.1404 0.1058 0.1868 

20 0.4048 0.5039 0.6441 0.3270 0.4684 0.6091 0.3519 0.2856 0.4641 

30 0.4026 0.5800 0.5512 0.2824 0.1016 0.6046 0.3481 0.3278 0.4572 

40 0.3879 0.4513 0.7662 0.1476 0.3944 0.6599 0.3786 0.4095 0.5240 

50 0.4173 0.6162 0.8176 0.5851 0.6492 0.7186 0.5144 0.5282 0.5918 

100 0.7095 0.8375 0.8344 0.7131 0.6520 0.8203 0.5412 0.6570 0.7985 

200 0.7436 0.8405 0.9191 0.7009 0.8229 0.8895 0.7340 0.7785 0.8739 

250 0.8232 0.8567 0.9346 0.8030 0.8231 0.9001 0.7207 0.7643 0.8599 

500 0.9194 0.9098 0.9595 0.8575 0.8848 0.9347 0.7647 0.8386 0.9292 

1000 0.9423 0.9539 0.9759 0.9215 0.9100 0.9667 0.8597 0.91789 0.9607 

5000 0.9654 0.9879 0.9949 0.9651 0.9691 0.9921 0.9514 0.9739 0.9903 

10000 0.9855 0.9887 0.9963 0.9831 0.9811 0.9955 0.9789 0.9839 0.9944 

 

 

Table 2: Simulated and approximated critical values for 5% and 1%,when 2,3,4k  for   

 Exponential, Gamma and Normal sample. 
n  

`2

* ( )EE 

 
2

* ( )GE   
2

* ( )NE   
3

* ( )EE   
3

* ( )GE   
3

* ( )NE   
4

* ( )EE   
*

4
( )GE 

 

4

* ( )NE   

 

10 0.056

7 

0.024

7 

0.0939 

0.0491 

0.1666 

0.0984 

0.0353 

0.0151 

0.0561 

0.0266 

0.0812 

0.0446 

0.0217 

0.0082 

0.0296 

0.0139 

0.0366 

0.0164 

20 0.158

0 

0.092

3 

0.2346 

0.1517 

0.4206 

0.3399 

0.1082 

0.0664 

0.1711 

0.1087 

0.3028 

0.2360 

0.0843 

0.0515 

0.1316 

0.0828 

0.2226 

0.1677 

30 0.248

2 

0.155

2 

0.3331 

0.2414 

0.5480 

0.4876 

0.1688 

0.1094 

0.2557 

0.1865 

0.4425 

0.3816 

0.1347 

0.0903 

0.2023 

0.1417 

0.3613 

0.3079 

40 0.311

7 

0.218

5 

0.4018 

0.3095 

0.6285 

0.5669 

0.0372 

0.0159 

0.3219 

0.2424 

0.5354 

0.4794 

0.1805 

0.1250 

0.2684 

0.2006 

0.4585 

0.4061 

50 0.364

3 

0.262

0 

0.4639 

0.3663 

0.6826 

0.6322 

0.2875 

0.2023 

0.3832 

0.3027 

0.5996 

0.5504 

0.2308 

0.1684 

0.3209 

0.2543 

0.5262 

0.4778 

100 0.532

7 

0.441

0.6225 

0.5392 

0.8122 

0.7803 

0.4541 

0.3722 

0.5494 

0.4809 

0.7543 

0.7260 

0.4014 

0.3198 

0.4924 

0.4277 

0.7035 

0.6709 
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9 

200 0.677

5 

0.596

4 

0.7478 

0.6872 

0.6079 

0.5309 

0.6079 

0.5309 

0.6910 

0.6331 

0.8550 

0.8350 

0.5609 

0.5000 

0.6456 

0.5922 

0.8236 

0.8043 

250 0.715

0 

0.644

4 

0.7828 

0.7255 

0.6580 

0.5850 

0.6581 

0.5850 

0.7319 

0.6813 

0.8783 

0.8636 

0.6071 

0.5507 

0.6884 

0.6409 

0.8507 

0.8343 

500 0.814

2 

0.767

4 

0.8630 

0.8262 

0.7716 

0.7211 

0.7716 

0.7211 

0.8294 

0.7950 

0.9310 

0.9218 

0.7353 

0.6877 

0.7979 

0.7652 

0.9148 

0.9061 

1000 0.884

5 

0.858

0 

0.9177 

0.8996 

0.8556 

0.8279 

0.8555 

0.8279 

0.8936 

0.8726 

0.9616 

0.9576 

0.8292 

0.7978 

0.8739 

0.8532 

0.9519 

0.9475 

5000 0.965

4 

0.957

9 

0.9761 

0.9713 

0.9931 

0.9923 

0.9546 

0.9461 

0.9681 

0.9626 

0.9904 

0.9896 

0.9451 

0.9363 

0.9777 

0.9745 

0.9879 

0.9868 

10000 0.979

9 

0.975

4 

0.9863 

0.9834 

0.9732 

0.9686 

0.9732 

0.9686 

0.9818 

0.9784 

0.9948 

0.9944 

0.9679 

0.9632 

0.9777 

0.9745 

0.9934 

0.9929 

 

Note: 
* ( )

kEE  , 
*

( )
kGE  , and 

* ( )
kNE  are  simulated and approximate critical values for Exponential, 

Gamma and Normal respectively. 

In each two-entry, the first line is the critical values for 0.05  and the second line is the critical values for 

0.01  . We reject 0H  if kE < criticalE
 

 
4. EMPIRICAL APPLICATION 

4.1 Data Description 

In this study, daily official central foreign exchange data were collected from Central Bank of Nigeria (CBN) 

official website, the sample period is from, October 12, 2001 to March 8 2016; this represents 3487. Data set 

for of three currency exchange rates against Nigeria Naira. Three foreign exchange rates were considered 

against the NGN which include US Dollars.  If tS  be the exchange rate of USD against NGN and let 

 1logt t tr S S  , then the exchange rate of NGN against USD is 1 tS . This will yield the log returns 

1

1
log

1

t
t

t

S
r

S 

 
  

 
., it is observed from the normal Q-Q plots that he data is not normally distributed but it was 

closed to normal after the logarithm transformation.  

 

Table 3: result of descriptive of the Returns of US Dollars against Nigeria Naira 
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Raw 

 

Log return 

 

Min 0.005038 -0.56340 

Max 0.015130 0.56340 

Mean 0.007145 0.00016 

Std.dev 0.000963 0.19137 

 Skew -0.06282 0.19137 

Kurtosis 1.305108 800.516 

1Q  0.006442 0.00000 

2Q  0.006897 0.00000 

3Q  0.007895 0.00000 

 

 
Fig 4: Time series plot of USD-

NGN exchange rate 

 

 
 

Fig 5: Q-Q normal plot of USD-

NGN raw exchange rate 

 
 

Fig 5: Q-Q normal plot of USD-

NGN log transformed exchange 

rate  
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Table 4: Result beforelogarithm transformation 

 
n  

2kE   3kE   4kE   , 2* kE    , 3* kE    , 4* kE    

10 0.9999907 0.9999864 0.9999822 1.00000 

1.00000 

1.00000 

1.00000 

1.00000 

1.00000 

20 0.9999811 0.9999717 0.9999623 1 

1 

0.9999999 

0.9999999 

0.9999999 

0.9999999 

50 0.9999974 0.9999609 0.9999479 0.9999997 

0.9999997 

0.9999996 

0.9999996 

0.9999995 

0.9999995 

100 0.9999558 0.9999338 0.9999116 0.9999989 

0.9999989 

0.9999984 

0.9999984 

0.9999979 

0.9999979 

200 0.9999424 0.9999135 0.9998847 0.9999986 

0.9999986 

0.9999949 

0.9999949 

0.9999932 

0.9999932 

500 0.9998968 0.9998452 0.9997936 0.9999825 

0.9999825 

0.9999974 

0.9999974 

0.9999655 

0.9999655 

1000 0.9998531 0.9997799 0.9997072 0.9999264 

0.9999264 

0.9998897 

0.9998897 

0.9998531 

0.9999907 

2000 0.9996886 0.9995328 0.9993768 

0.9993768 

0.9996546 

0.9996546 

0.999482 

0.999482 

0.9993101 

0.9993101 

3000 0.9986702 0.9980048 0.9973389 0.9987269 

0.9987269 

0.9980912 

0.9980912 

0.9974561 

0.9974561 

 

Note: The critical values at 1% and 5% are recorded at first and second entry respectively in 

columns 5, 6 and 7 while Tietjen-Moore test statistics are computed in the first three columns. 

 

Table 5: Result after logarithm transformation 

 
n  

2kE   3kE   4kE   , 2* kE    , 3* kE    , 4* kE    

10 1.00000 1.00000 1.00000 

1.00000 

1.00000 

1.00000 

1.00000 

1.00000 

1.00000 

1.00000 

20 1.00000 1.00000 1.00000 

1.00000 

1.00000 

1.00000 

0.9999999 

0.9999999 

0.9999999 

0.9999999 

50 1.00000 1.00000 0.9999999 

 

0.9999997 

0.9999997 

0.9999996 

0.9999996 

0.9999995 

0.9999995 

100 1.00000 1.00000 0.9999999 

 

0.9999989 

0.9999989 

0.9999984 

0.9999984 

0.9999979 

0.9999979 

200 1.00000 0.9999999 0.9999999 

 

0.9999986 

0.9999986 

0.9999949 

0.9999949 

0.9999932 

0.9999932 

500 1.00000 0.9999999 0.9999999 

 

0.9999825 

0.9999825 

0.9999974 

0.9999974 

0.9999655 

0.9999655 

1000 1.00000 0.9999999 0.9999999 0.9999264 

0.9999264 

0.9998897 

0.9998897 

0.9998531 

0.9999907 

2000 1.00000 0.9999999 0.9999999 

 

0.9996546 

0.9996546 

0.999482 

0.999482 

0.9993101 

0.9993101 

3000 0.9999997 0.9999996 0.9999996 0.9987269 

0.9987269 

0.9980912 

0.9980912 

0.9974561 

0.9974561 
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Note: The critical values at 1% and 5% are recorded at first and second entry respectively in 

columns 5, 6 and 7 while Tietjen-Moore test statistics are computed in the first three columns. 

 

5. DISCUSSION AND RECOMMENDATION  

In this study algorithm from Tietjen-Moore test statistics was carried out after 10, 000 

replications of Normal, Exponential and Gamma sample has been implemented in the R 

programming language, R core team (2016). The critical values were also gotten from the 

simulated sample at specified value of n . Almost all points falling on a straight line on normal 

Q-Qplots for Normal sample reveals how plot of a data set that is approximately normally 

distributed should look like, exponential and gamma sample deviates from this. 

 

Plots of raw exchange rate deviates from normality as much as descriptive statistics shows in 

table 3 with skewness and kurtosis. However, normal Q-Q plots for the logarithm transformed 

data shows that the data is normally distributed.  

 

Table 4 shows test statistics of Tietjen-Moore ( kE ) at k =2,3 and 4 and the critical values are 

equally computed. It is observed that *

k iE E   where i=2, 3 and 4 at all values of n. therefore is 

k-upper outliers at k =2,3, and 4 at all values of n  observed.    

 

Table 5 above shows test statistics of Tietjen-Moore ( kE ) at k=2,3 and 4 and the critical values 

are equally computed. It is observed that *

k iE E   at 50n  and *

k iE E   at 20n  where i=2, 

3 and 4. Therefore is no k-upper outliers at k=2,3, and 4 at all values of n observed when the data 

is logarithmic transformed.    

 

Therefore, it is recommended that proper evaluation of nature of data be done so as not to have 

error in estimation or forecast.  
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