Understanding Significant Factors of Attitude and Purchase Intention of Online Customers Toward E-Commerce in China

Authors

  • Jueran Yang

DOI:

https://doi.org/10.14456/shserj.2024.56
CITATION
DOI: 10.14456/shserj.2024.56
Published: 2024-12-18

Keywords:

Attitude, Purchase intention, Online shopping, E-Commerce, China

Abstract

Purpose: The primary objective of this study is to examine the factors that shape the attitudes and purchase intentions of Chinese online shoppers in relation to online shopping within China. To achieve this, a conceptual framework was constructed using the Theory of Reasoned Action (TRA) and the Technology Acceptance Model (TAM). The framework encompasses perceived usefulness, perceived ease of use, attitude, trust, perceived risk, subjective norms, price, and purchase intention. Research design, data, and methodology: The study targets a population of 458 online consumers in China who are 31 years old or over. The validity and reliability of the research are assessed using Item-Objective Congruence (IOC) and Cronbach's Alpha. To ensure diverse representation, the sampling procedure incorporates a combination of judgmental, stratified random, and convenience sampling methods. The collected data is analyzed through Confirmatory Factor Analysis (CFA) and Structural Equation Modeling (SEM) techniques, allowing for a comprehensive examination of the research variables. Results: Perceived usefulness and perceived ease of use influence purchase intention mediated by attitude towards online shopping. Trust and price significantly impact purchase intention. Nevertheless, perceived risk and subjective norms do not significantly impact purchase intention. Conclusion: The conclusions of this study have significant real-world implications for online platforms. Online platforms and merchants may use the results of this study to increase sales and profitability.

Author Biography

Jueran Yang

College of International Studies, Sichuan University, China.

References

Ajzen, I., & Fishbein, M. (1988). Theory of reasoned action-Theory of planned behavior. University of South Florida, 5(2), 67-98.

Al-Debei, M. M., Akroush, M. N., & Ashouri, M. I. (2015). Consumer attitudes towards online shopping. Internet Research, 25(5), 707-733. https://doi.org/10.1108/IntR-05-2014-0146

Aldhmour, F., & Sarayrah, I. (2016). An investigation of factors influencing consumers’ intention to use online shopping: An empirical study in South of Jordan. Journal of Internet Banking and Commerce, 21(2), 1-48.

Amaro, S., & Duarte, P. (2015). An integrative model of consumers’ intentions to purchase travel online. Tourism Management, 46, 64-79. https://doi.org/10.1016/j.tourman.2014.06.006

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238-246. https://doi.org/10.1037/0033-2909.107.2.238

Bentler, P. M., & Speckart, G. (1979). Models of Attitude-Behavior Relations. Psychological Review, 86(5), 452-64.

Bigné-Alcañiz, E., Ruiz-Mafé, C., Aldás-Manzano, J., & Sanz-Blas, S. (2008). Influence of online shopping information dependency and innovativeness on internet shopping adoption. Online Information Review, 32(5), 648-667.

Bilgihan, A. (2016). Gen Y customer loyalty in online shopping: an integrated model of trust, user experience and branding. Computers in Human Behavior, 61, 103-113. https://doi.org/10.1016/j.chb.2016.03.014

Brassington, F., & Pettitt, S. (2006). Principles of marketing (1st ed.). Pearson Education.

Brigula, R., Moraga, S. D., Catacutan-Bangit, A., & Jamis, M. (2018). Factors influencing online purchase intention of smartphones: A hierarchical regression analysis. Cogent Business & Management, 5(1), 1-10.

Buckingham, A., & Saunders, P. (2004). The Survey Methods Work Book (1st ed.). Polity Press.

Cao, X., & Mokhtarian, P. (2005). The intended and actual adoption of online purchasing: A brief review of recent literature (1st ed.). University of California Transportation Center.

Celik, H. (2011). Influence of social norms, perceived playfulness, and online shopping anxiety on customers’ adoption of online retail shopping: An empirical study in the Turkish context. International Journal of Retail & Distribution Management, 39(6), 390-413.

Celik, H., & Yilmaz, V. (2011). Extending the technology acceptance model for adoption of E-shopping by consumers in turkey. Journal of Electronic Commerce Research 12(2), 152-164.

Chang, H. H., & Chen, S. W. (2008). The impact of online store environment cues on purchase intention. Online Information Review, 32(6), 818-841. https://doi.org/10.1108/14684520810923953

Chen, M.-F., & Lu, T.-Y. (2011). Modeling e-coupon proneness as a mediator in the extended TPB model to predict consumers' usage intentions. Internet Research, 21(5), 508-526. https://doi.org/10.1108/10662241111176344

Chen, Y.-H., & Barnes, S. (2007). Initial trust and online buyer behaviour. Industrial Management & Data Systems, 107(1), 21-36. https://doi.org/10.1108/02635570710719034

Chin, S.-L., & Goh, Y.-N. (2017). Consumer purchase intention toward online grocery shopping: View from Malaysia. Global Business and Management Research: An International Journal, 9(4), 221-238.

Chiu, Y.-B., Lin, C.-P., & Tang, L.-L. (2005). Gender differs: Assessing a model of online purchase intentions in e-tail service. International Journal of Service Industry Management, 16(5), 416-435. https://doi.org/10.1108/09564230510625741

Clemons, E. K., Wilson, J., Matt, C., Hess, T., Ren, F., Jin, F., & Koh, N. S. (2016). Global differences in online shopping behavior: understanding factors leading to trust. Journal of Management Information Systems, 33(4), 1117-1148. https://doi.org/10.1080/07421222.2016.1267531

Crespo, A. H., Bosque, I. R. D., & Sanchez, M. M. G. D. L. S. (2009). The influence of perceived risk on Internet shopping behavior: a multidimensional perspective. Journal of Risk Research, 12(2), 259-277.

https://doi.org/10.1080/13669870802497744

Davis, F. (1985). A technology acceptance model for empirically testing new end-user information systems: theory and results. [Unpublished Doctoral dissertation]. MIT Sloan School of Management.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use and user acceptance of computer technology. MIS Quarterly, 13(3), 319-371. https://doi.org/10.2307/249008

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982

Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474. https://doi.org/10.1016/s1071-5819(03)00111-3

Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research (1st ed.). Addison-Wesley Publishing

Fishbein, M., & Ajzen, I. (1980). Understanding attitudes and predicting social behavior (1st ed.). Prentice-Hall.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.

Forsythe, S., Liu, C., Shannon, D., & Gardner, L. C. (2006). Development of a scale to measure the perceived benefits and risks of online shopping. Journal of Interactive Marketing, 20, 55-75.

Fortes, N., Rita, P., & Pagani, M. (2017). The effects of privacy concerns, perceived risk, and trust on online purchasing behavior. International Journal of Internet Marketing and Advertising, 11(4), 307.

https://doi.org/10.1504/ijima.2017.087269

Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in Online Shopping: An Integrated Model. MIS quarterly, 27, 51-90. https://doi.org/10.2307/30036519

Hair, J. J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2014). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). SAGE Publications.

Hernández, B., Jiménez, J., & José Martín, M. (2011). Age, gender, and income: Do they moderate online shopping behavior? Online Information Review, 35(1), 113-133. https://doi.org/10.1108/14684521111113614

Hoffman, D. L., Novak, T. P., & Peralta, M. (1999). Building Consumer Trust Online. Communications of the ACM, 42, 80-85. https://doi.org/10.1145/299157.299175

Hofstede, H. (1980). Culture consequences: International differences in work related values (1st ed.). Sage Publications.

Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modeling: Guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53-60.

Hsu, C. L., & Lu, H. P. (2004). Why do people play online games? An extended TAM with social influences and flow experience. Information and Management, 41, 853-68.

Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55. https://doi.org/10.1080/10705519909540118

Hu, P. J., Chau, P. Y. K., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology acceptance model using physical acceptance of telemedicine technology. Journal of Management Information Systems, 16(2), 91-112.

https://doi.org/10.1080/07421222.1999.11518247

Hunter, L. (2012). Challenging the reported disadvantages of e-questionnaires and addressing methodological issues of online data collection. Nurse Researcher, 20(1), 11-20. https://doi.org/10.7748/nr2012.09.20.1.11.c9303

Idrees, W., & Irfan, H. (2020). An empirical study of purchase intention of energy-efficient home appliances: the influence of knowledge of eco-labels and psychographic variables. International Journal of Energy Sector Management 14(6), 1297-1314.

Jarvenpaa, S. L., & Tractinsky, N. (1999). Consumer trust in an internet store: a cross-cultural validation. Journal of Computer-Mediated Communication, 5(1), 1-36.

Jarvenpaa, S. L., Tractinsky, N., & Vitale, M. (2000). Consumer trust in an Internet store. Information Technology and Management 1, 45-71. https://doi.org/10.1111/j.1083-6101.1999.tb00337.x

Johar, M. G. M., & Awalluddin, J. A. A. (2011). The role of technology acceptance model in explaining effect on e-commerce application system. International Journal of Managing Information Technology, 3(3), 1-14.

Kailani, M., & Kumar, R. (2011). Investigating Uncertainty avoidance and perceived risk for impacting internet buying a study in three national cultures. International Journal of Business and Management, 6(5), 76-92.

https://doi.org/10.5539/ijbm.v6n5p76

Keiser, S. E., & Krum, J. R. (1976). Consumer Perceptions of Retail Advertising with Overstated Savings. Journal of Retailing, 52, 27-37.

Kelley, K., & Lai, K. (2011). Accuracy in parameter estimation for the root mean square error of approximation: sample size planning for narrow confidence intervals. Multivariate Behavioral Research, 46(1), 1-32.

https://doi.org/10.1080/00273171.2011.543027

Khatibi, A., Haque, A., & Karim, K. (2006). ECommerce: A study on Internet Shopping in Malaysia. Journal of Applied Science, 3(6), 696-705. https://doi.org/10.3923/jas.2006.696.705

Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: the role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564.

https://doi.org/10.1016/j.dss.2007.07.001

Kim, S., & Jones, C. (2009). Online shopping and moderating role of offline brand trust. Direct Marketing: An International Journal, 3(4), 282-300. https://doi.org/10.1108/17505930911000874

Kimery, K. M., & McCord, M. (2002). Third party assurances: mapping the road to trust in ere tailing. Journal of Information Technology Theory and Application, 4(2), 63-82. https://doi.org/10.1109/hicss.2002.994158

Koballa, T. R. (1988). Attitude and related concepts in science education. Science Education, 72(2), 115-126.

https://doi.org/10.1002/sce.3730720202

Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online consumer behavior. Information Systems Research, 13(2), 205-223. https://doi.org/10.1287/isre.13.2.205.83

Landry, B. J. L., Griffith, R., & Hartman, S. (2006). Measuring student perceptions of blackboard using the technology acceptance model. Decision Sciences, 4(1), 87-99.

https://doi.org/10.1111/j.1540-4609.2006.00103.x

Lim, Y. J., Osman, A., Salahuddin, S. N., Romle, A. R., & Abdullah, S. (2016). Factors Influencing Online Shopping Behavior: The Mediating Role of Purchase Intention. Procedia Economics and Finance, 35, 401-410.

https://doi.org/10.1016/s2212-5671(16)00050-2

Limayem, M., Khalifa, M., & Frini, A. (2000). What makes consumers buy from Internet? A longitudinal study of online shopping. IEEE Transactions on Systems, 30(4), 1-10. https://doi.org/10.1109/3468.852436

Lin, F. (2007). Predicting consumer intentions to shop online: An empirical test of competing theories. Electronic Commerce Research and Applications, 6, 433-442. https://doi.org/10.1016/j.elerap.2007.02.002

Ling, K. C., Chai, L. T., & Piew, T. H. (2010). The Effects of Shopping Orientations, Online Trust, and Prior Online Purchase Experience toward Customers’ Online Purchase Intention. International Business Research, 3(3), 63.

https://doi.org/10.5539/ibr.v3n3p63

Ma, G., Wang, X., & Chen, J. (2012). Urban consumers ‘purchasing behavior of energy-saving household appliances and Study on influencing factors. Journal of chongqing university 18(6), 1-10.

Marsrom, M. (2007, September 3). Technology Acceptance Model and E-learning. http://eprints.utm.my/5482/1/MaslinMasrom2006_techn.pdf.

Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with theory of planned behavior. Information Systems Research, 2(3), 173-191. https://doi.org/10.1287/isre.2.3.173

Moon, J., Chadee, D., & Tikoo, S. (2008). Culture, product type, and price influences on consumer purchase intention to buy personalized products online. Journal of Business Research, 61, 31-39. https://doi.org/10.1016/j.jbusres.2006.05.012

Morris, M. G., & Dillon, A. (1997). The influence of user perceptions on software utilization: application and evaluation of a theoretical model of technology acceptance, IEEE Software, 14(4), 56-75.

Nasution, M. D. T. P., Rossanty, Y., Ariffin, K. H. K., & Zaini, N. I. B. M. (2019). An empirical examination of the factors influencing consumer’s purchase intention toward online shopping. Journal of Business and Retail Management Research, 13(4), 1-10. https://doi.org/10.24052/jbrmr/v13is04/art-02

Nepomuceno, M. V., Laroche, M., & Richard, M.-O. (2014). How to reduce perceived risk when buying online: the interactions between intangibility, product knowledge, brand familiarity, privacy, and security concerns. Journal of Retailing and Consumer Services, 21(4), 619-629. https://doi.org/10.1016/j.jretconser.2013.11.006

Nguyen, T. N., Lobo, A., & Greenland, S. (2017). The influence of cultural values on green purchase behavior. Marketing Intelligence & Planning, 35(3), 377-396. https://doi.org/10.1108/mip-08-2016-0131

O’Cass, A., & Fenech, T. (2003). Web Retailing Adoption: Exploring the Nature of Internet Users’ Web Retailing Behavior. Journal of Retailing and Consumer Services, 10, 81-94. http://dx.doi.org/10.1016/S0969-6989(02)00004-8

Park, J., Lennon, S. J., & Stoel, L. (2005). On-line product presentation: effects on mood, perceived risk, and purchase intention. Psychology & Marketing, 22(9), 695-719. https://doi.org/10.1002/mar.20080

Pavlou, P., & Chai, L. (2002). What drives Electronic Commerce across Cultures? Across-Cultural Empirical Investigation of the Theory of Planned Behavior. Journal of Electronic Commerce Research, 3(4), 1-14.

Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101-34. https://doi.org/10.1080/10864415.2003.11044275

Petrescu, M. (2011). Online price dispersion – more than imperfect information. Journal of Product & Brand Management, 20(7), 541-548. https://doi.org/10.1108/10610421111181840.

Pi, S.-M., Liao, H.-L., Liu, S.-H., & Lee, I.-S. (2011). Factors Influencing the Behavior of Online Group Purchasing in Taiwan. African Journal of Business Management, 5(16), 7120-7129.

Ponte, E. B., Carvajal-Trujillo, E., & Escobar-Rodríguez, T. (2015). Influence of trust and perceived value on the intention to purchase travel online: integrating the effects of assurance on trust antecedents. Tourism Management, 47, 286-302. https://doi.org/10.1016/j.tourman.2014.10.009

Premkumar, G., & Bhattacherjee, A. (2008). Explaining information technology usage: A test of competing models. Omega, 36(1), 64-75. https://doi.org/10.1016/j.omega.2005.12.002

Preston, V. (2009). Questionnaire Survey. International Encyclopedia of Human Geography, 1, 46-52.

https://doi.org/10.1016/b978-0-08-102295-5.10860-1

Ravitch, S. M., & Riggan, M. (2017). Reason & Rigor: How Conceptual Frameworks Guide Research (2nd ed.). SAGE Publications.

Rehman, S. U., Bhatti, A., Mohamed, R., & Ayoup, H. (2019). The Moderating Role of Trust and Commitment between Consumer Purchase Intention and Online Shopping Behavior in the Context of Pakistan. Journal of Global Entrepreneurship Research, 9, 43. https://doi.org/10.1186/s40497-019-0166-2

San-Martin, S., Prodanova, J., & Jimenez, N. (2015). The impact of age in the generation of satisfaction and WOM in mobile shopping. Journal of Retailing and Consumer Services, 23, 1-8. https://doi.org/10.1016/j.jretconser.2014.11.001

Sardar, T., Shahid Nadim, S. K., Rana, S., & Chattopadhyay, J. (2020). Assessment of Lockdown Effect in Some States and Overall, India: A Predictive Mathematical Study on COVID-19 Outbreak. Physics and Society, 1(6), 1-10.

Sarkar, S., & Khare, A. (2017). Moderating effect of price perception on factors affecting attitude towards online shopping. Journal of Marketing Analytics, 5(2), 68-80. https://doi.org/10.1057/s41270-017-0018-2

Sarmento, R., & Costa, V. (2016). Comparative Approaches to Using R and Python for Statistical Data Analysis (1st ed.). IGI Global Press.

Schiffman, L. G., & Kanuk, L. L. (2007). Consumer behavior: Its origins and strategic Applications. Consumer Behavior (9th Ed.). Pearson Education Inc.

Sekaran, U., & Bougie, R. (2016). Research Methods for Business: A Skill-Building Approach (7th ed.). Wiley & Sons.

Shainesh, G. (2012). Effects of trustworthiness and trust on loyalty intentions. International Journal of Bank Marketing, 30(4), 267-279. https://doi.org/10.1108/02652321211236905

Sharma, G. P., Verma, R. C., & Pathare, P. (2005). Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering, 71(3), 282-286. https://doi.org/10.1016/j.jfoodeng.2005.02.010

Sheppard, B. H., Hartwick, J., Warshaw, P. R., & Hartwick, J. O. N. (1988). The theory of reasoned past action: Meta-analysis of with modifications for recommendations and. Journal of Consumer Research, 15(3), 325-343.

https://doi.org/10.1086/209170

Singh, S., & Srivastava, S. (2018). Moderating effect of product type on online shopping behaviors and purchase intention: An Indian perspective. Cogent Arts & Humanities, 5(1), 1495043. https://doi.org/10.1080/23311983.2018.1495043

Spekman, R. E. (1988). Strategic supplier selection: understanding long term buyer relationships. Bus Horiz, 31(4), 75-81. https://doi.org/10.1016/0007-6813(88)90072-9

Suntornpithug, N., & Khamalah, J. (2010). Machine and person interactivity: the driving forces behind influences on consumers’ willingness to purchase online. Journal of Electronic Commerce Research, 11(4), 299–325.

Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science, 42(1), 85-92. https://doi.org/10.1287/mnsc.42.1.85

Taylor, S., & Todd, P. A. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly, 19(4), 561-570.

https://doi.org/10.2307/249633

Varadarajan, P. R. (1986). Consumers' Behavioral Responses to Coupon Price Promotions: An Empirical Inquiry (1st ed.). AMA Educators' Proceedings.

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies. Management Science, 2, 186-204.

Wakefield, L., & Inman, J. (2003). Situational price sensitivity: The role of consumption occasion, social context, and income. Journal of Retailing, 79(4), 199-212.

Wang, Y.-S., Wang, Y.-M., Lin, H.-H., & Tang, T.-I. (2003). Determinants of user acceptance of Internet banking: an empirical study. International Journal of Service Industry Management, 14(5), 501-519. https://doi.org/10.1108/09564230310500192

Wani, S. N., & Malik, S. (2013). A Comparative Study of Online Shopping Behavior : Effects of Perceived Risks and Benefits. International Journal of Marketing and Business Communication, 2(4), 41-55.

Winch, G., & Joyce, P. (2006). Exploring the Dynamics of Building, and Losing, Consumer Trust in B2C e-Business. International Journal of Retail & Distribution Management, 34(7), 541-555.

Yang, L., & Mao, M. (2014). Antecedents of Online Group Purchasing Behavior: From Price Leverage and Crowd Effect Perspectives. PACIS, 89, 1-17.

Zettelmeyer, F., Morton, F. S., & Silva-Risso, J. (2006). How the Internet lowers prices: evidence from matched survey and automobile transaction data. Journal of Marketing Research, 43(2), 168-81. https://doi.org/10.1509/jmkr.43.2.168

Zhang, W., & Duangekanong, S. (2023). The Influencing Factors of Gen Y Consumers’ Purchase Intention of 3D Cameras in Mianyang, China. Scholar: Human Sciences, 15(1), 30-37. https://doi.org/10.14456/shserj.2023.4

Zhou, L., Dai, L., & Zhang, D. (2007). Online shopping acceptance model - A critical survey of consumer factors in online shopping. Journal of Electronic Commerce Research, 8(1), 41-62.

Downloads

Published

2024-12-18

How to Cite

Yang, J. (2024). Understanding Significant Factors of Attitude and Purchase Intention of Online Customers Toward E-Commerce in China. Scholar: Human Sciences, 16(3), 24-35. https://doi.org/10.14456/shserj.2024.56