What Factors Drive Satisfaction and Continuance Intention Of Art Major Students Towards Cloud-Based E-Learning in Chongqing, China?

Main Article Content

Zhibin Gao

Abstract

Purpose:  The cloud-based e-learning system has rapidly developed in China, with over 21 platforms dedicated to online higher education teaching. This research, therefore, investigates the factors influencing the satisfaction and continuance intention of postgraduate students majoring in art in Chongqing, China, when using cloud-based e-learning system services. Research design, data, and methodology: The quantitative research study will collect data from 500 art postgraduate students in nine art majors at Sichuan Fine Arts Institute, Chongqing, China, through a questionnaire survey. Sample methods include judgmental sampling, quota sampling, and convenience sampling. Before data collection, an initial pilot study with a sample size of 30 will be conducted to establish the Index of Congruence (IOC) and perform a validity and reliability trial assessment. Confirmatory Factor Analysis (CFA) will be used to evaluate the convergence and discrimination validity of the measurement model. Results: The results indicated that perceived usefulness is the strongest factor influencing satisfaction, followed by information and system quality. However, e-learning effectiveness and service quality do not significantly impact the satisfaction of graduate students in the arts field. Conclusions: The administrators of the cloud-based e-learning system and the instructors of art courses should enhance student satisfaction from two perspectives: system level and course quality.

Downloads

Download data is not yet available.

Article Details

How to Cite
Gao, Z. (2024). What Factors Drive Satisfaction and Continuance Intention Of Art Major Students Towards Cloud-Based E-Learning in Chongqing, China? . AU-GSB E-JOURNAL, 17(3), 164-176. https://doi.org/10.14456/augsbejr.2024.59
Section
Articles
Author Biography

Zhibin Gao

School of Journalism and Communication, Sichuan International Studies University, Chongqing.

References

Abdullah, F., Ward, R., & Ahmed, E. (2016). Investigating the influence of the most used external variables of TAM on students’ perceived ease of use (PEOU) and perceived usefulness (PU) of e-portfolios. Computers in Human Behavior, 63(1), 75-90. https://doi.org/10.1016/j.chb.2016.05.014

Ahn, T., Ryu, S., & Han, I. (2007). The impact of web quality and playfulness on user acceptance of online retailing. Information & Management, 44(3), 263-275. https://doi.org/10.1016/j.im.2006.12.008

Al-Fraihat, D., Joy, M., & Sinclair, J. (2020). Evaluating E-learning systems success: an empirical study. Computers in Human Behavior, 102(1), 67-86. https://doi.org/10.1016/j.chb.2019.08.004

Al-Gahtani, S. S. (2016). Empirical investigation of e-learning acceptance and assimilation: a structural equation model. Applied Computing and Informatics, 12(1), 27-50. https://doi.org/10.1016/j.aci.2014.09.001

Attaran, M., Attaran, S., & Celik, B. G. (2017). Promises and challenges of cloud computing in higher education: a practical guide for implementation. Journal of Higher Education Theory and Practice, 17(6), 20-38.

Balog, A. (2011). Testing a multidimensional and hierarchical quality assessment model for digital libraries. Studies in Informatics and Control, 2(20), 233-246. https://doi.org/10.24846/v20i3y201104

Bamiah, M., Brohi, S., & Bashari Rad, B. (2018). Big data technology in education: Advantages, implementations, and challenges. Journal of Engineering Science and Technology. July(2018), 229 – 241.

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238–246. https://doi.org/10.1037/0033-2909.107.2.238.

Bentler, P. M., & Chou, C. P. (1987). Practical issues in structural modeling. Sociological Methods & Research, 16(1), 78-117. https://doi.org/10.1177/0049124187016001004

Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS Quarterly, 25(3), 351-370. https://doi.org/10.2307/3250921

Bobadilla, J., Serradilla, F., & Bernal, J. (2010). A new collaborative filtering metric that improves the behavior of recommender systems. Knowledge Based System, 23(6), 520-528. https://doi.org/10.1016/j.knosys.2010.03.009

Budu, K. W. A., Yinping, M., & Mireku, K. K. (2018). Investigating the effect of behavioral intention on E-learning systems usage: empirical study on tertiary education institutions in Ghana. Mediterranean Journal of Social Sciences, 9(3), 201-216. https://doi.org/10.2478/mjss-2018-0062

Chang, C. C. (2013). Exploring the determinants of e-learning systems continuance intention in academic libraries. Library Management, 34(1/2), 40-55. https://doi.org/10.1108/01435121311298261

Chang, Y.-S., Chien, Y.-H., Yu, K.-C., Lin, H.-C., & Chen, M. Y.-C. (2016). Students’ innovative environmental perceptions and creative performances in cloud-based m-learning. Computers in Human Behavior, 63, 988-994. https://doi.org/10.1016/j.chb.2016.06.032

Chen, C.-C., Lee, C.-L., & Hsiao, K.-L. (2018). Comparing the determinants of non-MOOC and MOOC continuance intention in Taiwan Effects of interactivity and openness. Library Hi Tech, 36(4), 705-719. https://doi.org/10.1108/lht-11-2016-0129

Chen, H. R., & Tseng, H. F. (2012). Factors that influence acceptance of web-based e-learning system for the in-service education of junior high school teachers in Taiwan. Evaluation and Program Planning, 35(3), 398-406. https://doi.org/10.1016/j.evalprogplan.2011.11.007

Chen, Z. S. C., Yang, S. J. H., & Huang, J. J. S. (2015). Constructing an e-portfolio-based integrated learning environment supported by library resource. The Electronic Library, 33(2), 273-291. https://doi.org/10.1108/el-07-2013-0118

Cheng, Y. M. (2014). Extending the expectation confirmation model with quality and flow to explore nurses’ continued blended e-learning intention. Information Technology & People, 27(3), 230-258. https://doi.org/10.1108/itp-01-2013-0024

Cheng, Y.-M. (2018). What drives cloud ERP continuance? an integrated view. Journal of Enterprise Information Management, 31(5), 724-750. https://doi.org/10.1108/jeim-02-2018-0043

Cheng, Y. M. (2021). Investigating medical professionals’ continuance intention of the cloud-based e-learning system: an extension of expectation-confirmation model with flow theory. Journal of Enterprise Information Management, 34(4), 1169-1202. https://doi.org/10.1108/jeim-12-2019-0401

Cheng, Y. M. (2023). What roles do quality and cognitive absorption play in evaluating cloud-based e-learning system success? Evidence from medical professionals, Interactive Technology and Smart Education, 20(2), 228-256. https://doi.org/10.1108/itse-12-2021-0222

Cho, V., Cheng, T. C. E., & Lai, W. M. J. (2009). The role of perceived user-interface design in continued usage intention of self-paced e-learning tools. Computers & Education, 53(2), 216-227.

Choi-Meng, L., Chin, F. G., Irene, K., Roy, C., & Hii, P. K. (2020). E-Learning Continuance intention in Malaysia. Journal of Archeology of Egypt, 17(10), 523-535. https://doi.org/10.1016/j.compedu.2009.01.014

Chopra, G., Madan, P., & Jaisingh, P. (2019). Effectiveness of e-learning portal-from students’ perspective A structural equation model (SEM) approach. Interactive Technology and Smart Education, 16(2), 94-116. https://doi.org/10.1108/itse-05-2018-0027

Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: development of ameasure and initial test. MIS Quarterly, 19(2), 189-211. https://doi.org/10.2307/249688

Cuadrado-Garcia, M., Ruíz-Molina, M. E., & Montoro-Pons, J. D. (2010). Innovation and Creativity in Education, 13(1), 1-37.

Cyr, D., Head, M., Lim, E., & Stibe, A. (2018). Using the elaboration likelihood model to examine online persuasion through website design. Information and Management, 55(7), 807-821. https://doi.org/10.1016/j.im.2018.03.009

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003. https://doi.org/10.1287/mnsc.35.8.982

DeLone, W. H., & McLean, E. R. (1992). Information systems success: the quest for the dependent variable. Information Systems Research, 3(1), 60-95. https://doi.org/10.1287/isre.3.1.60

DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: a ten-year update. Journal of Management Information Systems, 9(4), 9-30.

Elliott, K. M., & Shin, D. (2002). Student Satisfaction: an alternative approach to assessing this important concept. Journal of Higher Education Policy and Management, 24(2), 197-209. https://doi.org/10.1080/1360080022000013518

Faisal, C. M. N., Gonzalez-Rodriguez, M., Fernandez-Lanvin, D., & Andres-Suarez, J. D. (2017). Web design attributes in building user trust, satisfaction, and loyalty for a high uncertainty avoidance culture. IEEE Transactions on Human-Machine Systems, 47(6), 847-859. https://doi.org/10.1109/thms.2016.2620901

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.https://doi.org/10.2307/315131.

Freeze, R. D., Alshare, K. A., Lane, P. L., & Wen, H. J. (2010). IS success model in e-learning context based on students’ perceptions. Journal of Information Systems Education, 21(2), 173-184.

Gorla, N., Somers, T. M., & Wong, B. (2010). Organizational impact of system quality, information quality, and service quality. The Journal of Strategic Information Systems, 19(3), 207-228. https://doi.org/10.1016/j.jsis.2010.05.001

Gronroos, C. (1984). A service quality model and its marketing implications. European Journal of Marketing, 18(4), 36-44. https://doi.org/10.1108/eum0000000004784

Gudigantala, N., Song, J., & Jones, D. (2011). User satisfaction with web-based DSS: the role of cognitive antecedents. International Journal of Information Management, 31(4), 327-338. https://doi.org/10.1016/j.ijinfomgt.2010.10.009

Hair, J., Black, W., Babin, B., Anderson, R., & Tatham, R. (2006). Multivariate Data Analysis (6th ed.). Pearson Education.

Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (2010). Multivariate Data Analysis (6th ed.). Prentice Hall.

Hair, J. F., Arthur, H. M., Samouel, P., & Mike, P. (2007). Research Methods for Business (7th ed.). John Wiley and Sons.

Hassanzadeh, A., Kanaani, F., & Elahi, S. (2012). A model for measuring e-learning systems success in universities. Expert Systems with Applications, 39(12), 10959-10966. https://doi.org/10.1016/j.eswa.2012.03.028

Hew, T., & Kadir, S. L. S. A. (2016). Predicting instructional effectiveness of cloud-based virtual learning environment, Industrial Management & Data Systems, 116(8),1557-1584. https://doi.org/10.1108/imds-11-2015-0475

Hsu, C. L., & Lin, J. C. C. (2019). Understanding continuance intention to use online to offline (O2O) apps. Electronic Markets, 30(4), 883-897. https://doi.org/10.1007/s12525-019-00354-x

Hu, P. J. H., Hui, W., Clark, T. H. K., & Tam, K. Y. (2007). Technology-assisted learning and learning style: a longitudinal field experiment. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 37(6), 1099-1112. https://doi.org/10.1109/tsmca.2007.904741

Huang, D. (2023). Design and Construction of Virtual Simulation Experimental Teaching Platform in Colleges and Universities Based on VR Technology. Proceedings of the 2023 4th International Conference on Artificial Intelligence and Education (pp.488-494). ICAIE. https://doi.org/10.2991/978-94-6463-242-2_61.

Huang, L., Zhang, J., & Liu, Y. (2017). Antecedents of student MOOC revisit intention: Moderation effect of course difficulty. International Journal of Information Management, 37(2), 84-91. https://doi.org/10.1016/j.ijinfomgt.2016.12.002

Islam, A. N., & Azad, N. (2015). Satisfaction and continuance with a learning management system. International Journal of Information and Learning Technology, 32(2), 109-123. https://doi.org/10.1108/ijilt-09-2014-0020

Joo, Y. J., Park, S., & Shin, E. K. (2017). Students’ expectation, satisfaction, and continuance intention to use digital textbooks. Computers in Human Behavior, 69(1), 83-90. https://doi.org/10.1016/j.chb.2016.12.025

Jung, T., Chungb, N., & Leue, M. C. (2015). The determinants of recommendations to use augmented reality technologies: the case of a Korean theme park. Tourism Management, 49(1), 75-86. https://doi.org/10.1016/j.tourman.2015.02.013

Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information Technology Adoption Across Time: A Cross-sectional Comparison of Pre-adoption and Post-adoption Benefits. MIS Quarterly, 23(12), 183-213. https://doi.org/10.2307/249751

Keller, J. (1983). Motivational design of instruction. In C. Reigeluth (Ed.), Instructional Design Theories and Models: An Overview of Their Current Status (pp. 386-434). Routledge.

Kim, S. S., & Malhotra, N. K. (2005). A longitudinal model of continued IS use: an integrative view of four mechanisms underlying postadoption phenomena. Management Science, 51(5), 741-755. https://doi.org/10.1287/mnsc.1040.0326

Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). Guilford Press.

Ladyshewsky, R. K. (2004). E-learning compared with face to face: differences in the academic achievement of postgraduate business students. Australian Journal of Educational Technology, 20(3), 316-336. https://doi.org/10.14742/ajet.1350

Larsen, T. J., Sørebø, A. M., & Sørebø, Ø. (2009). The role of task-technology fit as users’ motivation to continue information system use. Computers in Human Behavior, 25(3), 778-784. https://doi.org/10.1016/j.chb.2009.02.006

Lee, M.-C. (2010). Explaining and predicting users’ continuance intention toward e-learning:an extension of the expectation-confirmation model. Computers & Education, 54(2), 506-516. https://doi.org/10.1016/j.compedu.2009.09.002

Limayem, M., & Cheung, C. M. K. (2008). Understanding information systems continuance: the case of Internet-based Learning technologies. Information & Management, 45(4), 227-232. https://doi.org/10.1016/j.im.2008.02.005

Lin, C., & Lin, M. (2019). The determinants of using cloud supply chain adoption. Industrial Management & Data Systems, 119(2), 351-366. https://doi.org/10.1108/IMDS-12-2017-0589.

Lin, K. M., Chen, N.-S., & Fang, K. (2011). Understanding e-learning continuance intention: a negative critical incidents perspective. Behavior & Information Technology, 30(1), 77-89. https://doi.org/10.1080/01449291003752948

Lin, W. S., & Wang, C. H. (2012). Antecedences to continued intentions of adopting e-learning system in blended learning instruction: a contingency framework based on models of information system success and task-technology fit. Computers and Education, 58(1), 88-99. https://doi.org/10.1016/j.compedu.2011.07.008

Lin, X., Featherman, M., & Sarker, S. (2017). Understanding factors affecting users’ social networking site continuance: a gender difference perspective. Information and Management, 54(3), 383-395. https://doi.org/10.1016/j.im.2016.09.004

Ma, R., & Mendez, M. C. (2023, July 12). China’s Integrated Online Learning Platforms. https://www.classcentral.com/report/china-integrated-platforms/

Masrek, M. N., & Gaskin, J. E. (2016). Assessing users’ satisfaction with web digital library: the case of University Teknologi MARA. The International Journal of Information and Learning Technology, 33(1), 36-56. https://doi.org/10.1108/ijilt-06-2015-0019

Mirabolghasemi, M., Shasti, R., & Choshaly, S. H. (2021). An investigation into the determinants of blended leaning satisfaction from EFL learners’ perspective. Interactive Technology and Smart Education, 18(1), 69-84. https://doi.org/10.1108/itse-07-2020-0117

Mouakket, S., & Bettayeb, A. (2015). Investigating the factors influencing continuance usage intention of Learning management systems by university instructors The Blackboard system case. International Journal of Web Information Systems, 11(4), 491-509. https://doi.org/10.1108/ijwis-03-2015-0008

Mtebe, J. S., & Raphael, C. (2018). Key factors in learners’ satisfaction with the e-learning system at the University of Dar es Salaam, Tanzania. Australasian Journal of Educational Technology, 34(4), 107-122. https://doi.org/10.14742/ajet.2993

Nabavi, A., Taghavi-Fard, M. T., Hanafizadeh, P., & Taghva, M. R. (2016). Information technology continuance intention: a systematic literature review. International Journal of E-Business Research, 12(1), 58-95. https://doi.org/10.4018/ijebr.2016010104

Negash, S., Ryan, T., & Igbaria, M. (2003). Quality and effectiveness in web-based customer support system. Information and Management, 40(8), 757-768. https://doi.org/10.1016/s0378-7206(02)00101-5

Noesgaard, S. S., & Ørngreen, R. (2015). The effectiveness of e-learning: an explorative and integrative review of the definitions, methodologies and factors that promote e-learning effectiveness. Electronic Journal of e-Learning, 13(4), 278-290.

Nunnally, J. C., & Bernstein, I. R. (1994). Psychometric theory (3 ed.). McGraw-Hill.

Panigrahi, R., Srivastava, P. R., & Sharma, D. (2018). Online learning: adoption, continuance and learning outcome. A review of literature. International Journal of Information Management, 43, 1-14. https://doi.org/10.1016/j.ijinfomgt.2018.05.005

Park, N., Roman, R., Lee, S., & Chung, J. E. (2009). User acceptance of a digital library system in developing countries: an application of the technology acceptance model. International Journal of Information Management, 29(3), 196-209. https://doi.org/10.1016/j.ijinfomgt.2008.07.001

Pedroso, R., Zanetello, L., Guimaraes, L., Pettenon, M., Goncalves, V., Scherer, J., Kessler, F., & Pechansky, F. (2016). Confirmatory factor analysis (CFA) of the crack use relapse scale (CURS). Archives of Clinical Psychiatry, 43(3), 37-40. https://doi.org/10.1590/0101-60830000000081

Piccoli, G., Ahmad, R., & Ives, B. (2001). Web-based virtual learning environments: a research framework and preliminary assessment of effectiveness in basic IT skills training. MIS Quarterly, 25(4), 401-426. https://doi.org/10.2307/3250989

Rai, A., Lang, S. S., & Welker, R. B. (2002). Assessing the validity of IS success models: An empirical test and theoretical information analysis. Information Systems Research, 13(1), 50-69. https://doi.org/10.1287/isre.13.1.50.96

Ramayah, T., & Lee, J. W. C. (2012). System characteristics, satisfaction, and e-learning usage: a structural equation model (SEM). TOJET: The Turkish Online Journal of Educational Technology, 1(2), 196-206.

Ranganathan, C., & Ganapathy, S. (2002). Key dimensions of business-to-consumer web sites. Information & Management, 39(6), 457-465. https://doi.org/10.1016/s0378-7206(01)00112-4

Roca, J. C., Chiu, C. M., & Martínez, F. J. (2006). Understanding e-learning continuance intention: an extension of the technology acceptance model. International Journal of Human Computer Studies, 64(8), 683-696. https://doi.org/10.1016/j.ijhcs.2006.01.003

Rust, R. T., & Oliver, R. L. (1994). Service quality: insights and managerial implication from the frontier. in Rust, T.R. and Oliver, R.L. (Eds), Service Quality: New Directions in Theory and Practice, 1-20. https://doi.org/10.4135/9781452229102.n1

Saifullah, M. K., Sharmeen, N., & Ahmed, Z. (2022). Effectiveness of online education during the COVID-19 pandemica study of Bangladesh, The International Journal of Information and Learning Technology, 39(4), 405-422. https://doi.org/10.1108/ijilt-11-2021-0167

Salimon, M. G., Yusoff, R. Z., & Mohd Mokhtar, S. S. (2016). What determines adoption of E-banking among Nigerians? A conceptual approach. Journal of Emerging Economies and Islamic Research, 4(2), 101. https://doi.org/10.24191/jeeir.v4i2.9090

Santos, J. (2003). E-Service Quality: A Model of Virtual Service Quality Dimensions. Managing Service Quality, 13, 233-246. http://dx.doi.org/10.1108/09604520310476490

Seddon, P., & Kiew, M. Y. (1996). A partial test and development of DeLone and McLean’s model of is success. Australasian Journal of Information Systems, 4(1), 90-109. https://doi.org/10.3127/ajis.v4i1.379

Sharma, G. P., Verma, R. C., & Pathare, P. (2005). Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering, 71(3), 282-286. https://doi.org/10.1016/j.jfoodeng.2005.02.010

Sica, C., & Ghisi, M. (2007). The Italian versions of the beck anxiety inventory and the beck depression inventory-II: Psychometric properties and discriminant power. In M.A. Lange (Ed.), Leading - edge psychological tests and testing research (pp. 27–50). Nova.

Stevens, J. P. (1992). Applied multivariate statistics for the social sciences (2nd ed.). Hillsdale.

Sun, P. C., Tsai, R. S., Finger, G., Chen, Y. Y., & Yeh, D. (2008). What drives a successful e-learning? An empirical investigation of the critical factors influencing learner satisfaction. Computer Educ., 50(4), 1183-202. https://doi.org/10.1016/j.compedu.2006.11.007

Sweeney, J. C., & Ingram, D. (2001). A comparison of traditional and web-based tutorials in marketing education: an exploratory study. Journal of Marketing Education, 23(1), 55-62. https://doi.org/10.1177/0273475301231007

Tai, W. T. (2006). Effects of training framing, general self-efficacy, and training motivation on Trainees’ training effectiveness. Personnel Review, 35(1), 51-65. https://doi.org/10.1108/00483480610636786

Tam, J. L. M. (2000). The effects of service quality, perceived value, and customer satisfaction on behavioral intentions. Journal of Hospitality and Leisure Marketing, 6(4), 31-43.

Theng, Y. L., Duncker, E., Mohd Nasir, N., Buchanan, G., & Thimbleby, H. (1999). Design guidelines and user-center digital libraries. Research and Advanced Technology for Digital Libraries, 22(24), 167-183. https://doi.org/10.1007/3-540-48155-9_12

Tratnik, A., Urh, M., & Jereb, E. (2019). Student satisfaction with an online and a face-to-face business English course in a higher education context. Innovations in Education and Teaching International, 56(1), 36-45. https://doi.org/10.1080/14703297.2017.1374875

Urdan, T. A. (2000). Corporate E-learning: Exploring a New Frontier (1st ed.). W. R. Hambrecht.

Wang, K. (2015). Determinants of mobile value-added service continuance: the mediating role of service experience. Information and Management, 52(3), 261-274. https://doi.org/10.1016/j.im.2014.11.005

Wang, Y. S., Wang, H. Y., & Shee, D. Y. (2007). Measuring e-learning systems success in an organizational context: scale development and validation. Computers in Human Behavior, 23(4), 1792-1808. https://doi.org/10.1016/j.chb.2005.10.006

Wu, B., & Chen, X. (2017). Continuance intention to use MOOCs: Integrating the technology acceptance model (TAM) and task technology fit (TTF) model. Computers in Human Behavior, 67, 221-232. https://doi.org/10.1016/j.chb.2016.10.028

Wu, J. H., & Wang, Y. M. (2006). Measuring KMS success: A respecification of the DeLone and McLean’s model. Information and Management, 43(6), 728-739. https://doi.org/10.1016/j.im.2006.05.002.

Xinli, H. (2015). Effectiveness of information technology in reducing corruption in China. Electronic Library, 33(1), 52-64, https://doi.org/10.1108/EL-11-2012-0148

Xiong, Y., Ling, Q., & Li, X. (2021). Ubiquitous e-Teaching and e-Learning: China’s Massive Adoption of Online Education and Launching MOOCs Internationally during the COVID-19 Outbreak. Wireless Communications and Mobile Computing, 2021, 6358976. https://doi.org/10.1155/2021/6358976

Xu, F., Tian, M., Xu, G., Ayala, B. R., & Shen, W. (2017). Understanding Chinese users’ switching behavior of cloud storage services. The Electronic Library, 35(2), 214-232. https://doi.org/10.1108/el-04-2016-0080

Yakubu, M. N., & Dasuki, S. (2018). Assessing eLearning systems success in Nigeria: an application of the DeLone and McLean information systems success model. Journal of Information Technology Education: Research, 17, 182-202. https://doi.org/10.28945/4077

Yan, Y., Zha, X., Zhang, J., & Hou, X. (2014). Comparing digital libraries with virtual communities from the perspective of e-quality. Library Hi Tech, 32(1), 173-189. https://doi.org/10.1108/lht-04-2013-0042

Yengin, I., Karahoca, A., & Karahoca, D. (2011). E-learning success model for instructors’ satisfactions in perspective of interaction and usability outcomes. Procedia Computer Science, 3, 1396-1403. https://doi.org/10.1016/j.procs.2011.01.021

Yuan, Y., Lai, F., & Chu, Z. (2018). Continuous usage intention of internet banking: a commitment trust model. Information Systems and e-Business Management, 17(1), 1-25. https://doi.org/10.1007/s10257-018-0372-4

Zabidi, N. A., Woo, T. K., & Kumar, P. R. (2017). Quality assurance in learning materials development. Asian Association of Open University Journal, 12(1), 68-81. https://doi.org/10.1108/aaouj-01-2017-0014

Zhang, C., & Yang, T. (2021). Design and Implementation of Interactive Teaching and Learning in Virtual Simulation Teaching Experiment Center. Experiment Science and Technology, 19(4), 56-66.

Zhang, D., Zhao, J. L., Zhou, L., & Nunamaker, J. J. F. (2004). Can e-learning replace classroom learning? Communications of the ACM, 47(5), 75-79. https://doi.org/10.1145/986213.986216

Zheng, Y., Zhao, K., & Stylianou, A. (2013). The impacts of information quality and system quality on users’ continuance intention in information-exchange virtual communities: an empirical investigation. Decision Support Systems, 56(1), 513-524. https://doi.org/10.1016/j.dss.2012.11.008